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ABSTRACT. Let A be a geometrically simple abelian variety over a number field k, let X be
a subgroup of A(k) and let P € A(k) be a rational point. We prove that if P belongs to X
modulo almost all primes of k then P already belongs to X.

INTRODUCTION

Let A be an abelian variety over a number field &, let X be a subgroup of the Mordell-Weil
group A(k) and let P € A(k) be a rational point. We want to “decide” whether P belongs
to X or not. To do so, we choose a model of A over an open subscheme U of spec O}, where
Oy denotes the ring of integers of k. Because A is proper, P and all points in X extend to
U—points. For closed points p € U we can consider the reduction map

redy : A(U) — A(kp)

where kp, := O} /p denotes the residue field at p. A necessary condition for P belonging to X
is then that for all closed points p € U the reduction of P modulo p belongs to the reduction
of X modulo p. Wojciech Gajda asked in 2002 whether this condition is also sufficient. This
problem was named the problem of detecting linear dependence.

In a joint work with Antonella Perucca ([JP09]) we have shown that the answer to Gajda’s
question is negative in general by giving an explicit counterexample (Banaszak and Krasén
have found independently such a counterexample). The abelian variety in our counterexample
is a power of an elliptic curve. Our main result in this note is:

Main Theorem. Let A be a geometrically simple abelian variety over a number field k,
let X be a subgroup of A(k) and let P € A(k) be a rational point. If the set of places p of k
for which redy(P) belongs to redy(X) has natural density 1, then P belongs to X.

By saying that A is geometrically simple we mean that A has no other abelian subvariety
other than 0 and itself defined over an algebraic closure k of k. The statement of the theorem
is new even in the case where A is an elliptic curve. However, many partial results in this
direction have already been obtained, let us mention a few of them. The earliest result on
this problem is due to Schinzel ([Sch75]), who showed the analogue of our Main Theorem for
the multiplicative group in place of an abelian variety. Weston has shown that for an abelian
variety with a commutative endomorphism ring the statement of our theorem holds up to a
torsion ambiguity ([Wes03]), and Kowalski has shown the statement of our theorem to hold
for an elliptic curve and a cyclic subgroup ([Kow03]). Banaszak, Gajda, Gérnisiewicz and
Krason have proven similar statements under various technical assumptions on the abelian
variety and the subgroup ([BGKO05, [GG09, BK09]), and Perucca has some similar results for
products of tori and abelian varieties ([Per(8]).
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Here is a quick overview on the main ideas of the proof. Let U be an open subscheme
of spec Ok, where Oy, is the ring of integers of the number field k. A 1-motive over U is a
morphism of fppf sheaves

M=u:Y — G|

over U where Y is étale locally constant, locally isomorphic to a finitely generated free group,
and where G is a semiabelian scheme over U. By a semiabelian scheme over U we understand
in this paper an extension over U of an abelian scheme scheme by a torus. In the case Y is
constant defined by a finitely generated free group which we still denote by Y, morphisms
of fppf-sheaves Y — G are the same as homomorphisms of groups Y — G(U). Given a
semiabelian scheme G over U and a finitely generated subgroup X of G(U) we can choose a
1-motive [Y — G] over U where Y is a constant sheaf defined by a finitely generated free
group, such that u(Y) = X. In the case X is torsion free on can just take Y = X and for u
the inclusion.

With any 1-motive M over U and prime number ¢ invertible on U is associated a locally
constant ¢-adic sheaf TyM on U, which can also be viewed as a finitely generated free
Zy—module equipped with a continuous action of the absolute Galois group of k which is
unramified in U. For a set .S of closed points of U of density 1 we consider the group

HLY(U,TyM) := ker <H1(U, ToM) — [] B (k. TgM))
pes
where k, = Oy /p denotes the residue field at p. Using Kummer theory we will show that the
vanishing of the groups H é(U , T¢M) for all £ is the obstruction for the local-global principle
of the Main Theorem to hold. As observed by Serre and Tate it is essentially a consequence
of Chebotarev’s Density Theorem that the group H é(U, Ty M) is isomorphic to the group

HNILM TyM) := ker (Hl(LM,TgM)—> 11 Hl(C,TgM)>
c<LM

where LM denotes the image of the Galois group Gal(k|k) in the group of automorphisms of
T,M and where the product ranges over all subgroups C' of LM topologically generated by
one element. In the case where G is an abelian variety we will determine the group L™ up to
comensurability, and modulo the Mumford—Tate conjecture. This will allow us then, in the
case where A is geometrically simple, to gain sufficient control on H!(LM K T,M) in order to
prove the Main Theorem.

A comment about our use of 1-motives is in order. Classical 1-motives and Galois—modules
attached to them are an effective tool for studying the arithmetic of semiabelian varieties over
number fields. We will use them only as such a tool. In principle, everything could be done
in terms of appropriately defined Galois modules, without refering to 1-motives at all.
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and to G. Banaszak and P. Krason for pointing out a mistake in an earlier version of this
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1. ON 1-MOTIVES AND GALOIS REPRESENTATIONS

In this section I recall what 1-motives are and how to attach /—adic Galois representations
to them. Then I show how these representations are linked with the local-global problem of
detecting linear dependence.

— 1.1. Let S be a noetherian regular scheme. A 1-motive M over S is ([Del74], Section 10)
a two—term complex of fppf-sheaves over S, concentrated in degrees —1 and 0

M:=[Y % G

where Y is étale locally isomorphic to a finitely generated free Z-module and where G is
representable by a semiabelian scheme over S. A morphism of 1-motives is a morphism of
complexes of fppf—sheaves. One can view M as an object of the derived category of fppf—
sheaves on S. Applying the derived global section functor RI'(S, —) and taking homology
yields the flat cohomology groups H(S, M). There is a long exact sequence relating the
cohomology of G and Y with that of M starting with

0 — H YS,M) — HS,Y) — H(S,G) — H°(S,M) — H (S, Y) — ---

One can also view M as an object of the derived category of étale sheaves and obtain étale
cohomology groups. However, since G and Y are both smooth over S, these are canonically
isomorphic.

— 1.2. Notation: For a commutative group C, a prime number ¢ and an integer i > 0, we
introduce the following notation: C[¢!] denotes the group of elements of C' of order ¢!, and
C[¢°°] denotes the group of elements of C' of order any power of . We write

C®Zy:=lmC/l'C  and  T,C :=limC[{]
i>0 i>0

for the ¢—adic completion and the ¢-adic Tate module of C. These groups have a natural
Zs~module structure. There is a canonical morphism C — C ® Z, whose kernel is the
intersection of the groups ¢°C' over i > 0. Remark that if C is finitely generated, we may
identify the ¢-adic completion C' ® Z; with the tensor product C ®z Z; via the mentioned
canonical morphism.
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— 1.3. Following Deligne (loc.cit.) we now construct the /—adic Tate module associated with
(or f—adic realisation of) a 1-motive M = [u : Y — G] over S, where ¢ is any prime number
invertible on S. We shall consider the derived tensor product M ®" Z/¢'7Z, or alternatively
(that amounts to the same) the cone of the multiplication-by—¢* map on the complex M.
The homology of M ®" Z/#7 is concentrated in degree —1 because Y is torsion free and G
is divisible as a sheaf. The homology group

Tyin(M) = H (M " Z/('Z)

is a finite flat group scheme over S annihilated by ¢!, and because we suppose that / is
invertible on S it is locally constant. We have a natural morphism 77 pit17(M) — 17 4iz,(M)
induced by the map Z/¢**1Z — Z/0'Z for all i > 0. The formal limit with respect to these
maps

T/M = 138 T7,0i7,(M)

is a locally constant ¢—adic sheaf on S, called the £—adic Tate module of M. This construction
is functorial in M so we look at Ty(—) as being a functor from the category of 1-motives over
S to the category of ¢—adic sheaves over S. The cohomology of TyM over S is then defined
accordingly as

H' (S, T,M) := lim HYS, M &Y 7/07)

These cohomology groups have a natural Z,—module structure. There are natural short exact
sequences as follows. The exact “Kummer” triangle M — M — M ®“ Z/¢'Z induces a
long exact sequence of cohomology groups from where we can cut out the piece

0 — H"YS,M)/¢'H"(S,M) — H"Y(S,M @ z/0'7) — H" (S, M)[(}] — 0

Taking limits over 7 and observing that the left hand limit system satisfies the Mittag—Lefller
condition, we find a short exact sequence of Zy,—modules

0— HY(S,M)®2Zy — H"(S,T,;M) — T,H"(S,M) — 0

Naturality in M and S is clear from the construction.

— 1.4. For the rest of this section we fix a number field k with algebraic closure k and absolute
Galois group I' := Gal(k|k), a nonempty open subscheme U of spec Oy where O}, denotes the
ring of integers of k, and a prime number ¢ invertible on U. We write ky for the maximal
subextension of k|k unramified in U, and set I'yy := Gal(ky|k). In other words, 'y = 71 (U, u)
is the étale fundamental group of U with respect to the base point u = speck.

— 1.5. By Grothendieck’s theory of the fundamental group (see for example [Sza09], Theorem
5.4.2), there is an equivalence of categories

locally constant Z—con- finitely generated
structible sheaves on U discrete I'y—modules

given by the functor that sends such a sheaf F' on U to the I'y—module F'(k). In particular,
to give a locally constant sheaf Y locally isomorphic to a finitely generated free group is the
same, via this equivalence of categories, as to give a finitely generated free group Y together
with a continuous action of I';;. Continuity means that the stabiliser of Y in 'y is an open
subgroup of finite index. As a consequence, a 1-motive over U is given by the following data:
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A finitely generated free group Y together with a continuous action of I'y;, a semiabelian
scheme G over U and a morphism of I'y-modules v : Y — G(ky).

— 1.6. The equivalence of categories given in also explains why ¢—adic sheaves on U are
essentially the same as f—adic representations of k unramified in U. Indeed, this equivalence
of categories induces an equivalence

{locally constant /—adic } - {ﬁnitely generated ngodules}

sheaves on U with continuous I'y—action

given by the functor that sends a locally constant ¢—adic sheaf on U, given by a formal
limit system (73)°, to the Zy;—module lim 7;(k). A quasi inverse to this functor is can be
defined as follows: Given a finitely generated Z,—module 1" with continuous I'y—action, one
associates with it the formal limit system (7;)°, where T; is the locally constant sheaf on U

corresponding to the finite I'y;—module T/¢'T.

— 1.7. Using the equivalence of categories introduced in we can give an explicit de-
scription of the Tate module of a 1-motive M = [u : Y — G] over U in terms of Galois
representations. For all ¢ > 0 we have finite Galois modules
—
s (@) = LOPLEY X OB ) = £7)
yu(y)) |y €Y}

which are unramified in U. The limit over i of these finite Galois modules is then the Tate
module of M seen as a Galois module. Explicitly, an element z € TyM is given by a sequence

(vi, Pi)72, where the y;’s are elements of Y, the P;’s are elements of G(k), and where it is
required that

u(y) =€'P;  and (P — Pi1 = u(z) and  y -y ="z

for some elements z; € Y. Two sequences (y;, P;)2, and (y., P{)°, represent the same
element if and only if for each i > 0, there exists a z; € Y such that fiz;, = y; — 1/

; and
U(Zl) = PZ - Pi,‘

Proposition 1.8. Let T' = (1;)32, be a locally constant £—adic sheaf on U corresponding via
the above equivalence to a Zy—module with continuous Ty —action (also denoted by T ). For
r=20,1, the natural maps

H Ty, T) — H"(U,T)

are isomorphisms, where H"(I'y;, T') is defined by means of continuous cocycles.

Proof. From Proposition I1.2.9 of [Mil08] we know that if F' is a finite locally constant sheaf
of order a power of ¢ on U, then we have canonical isomorphisms H" (U, F) = H"(I'y, F)
for all » > 0. Cohomology of /—adic sheaves over U commutes with limits by definition. It
remains to prove that if T is a finitely generated Z,—module with I'y—action, then the natural
map

H'(Py, T) — lim H' (T, T/0'T)

is an isomorphism for r = 0, 1. For r = 0 this is trivial, and for » = 1 this follows from the well
known fact that continuous H'! commutes with limits of compact modules (see Proposition
7 of [Ser64]). O
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Proposition 1.9. Let M = [u : Y — G| be a 1-motive over k. There is a canonical
isomorphism (ToM)' = ker(YT — G(k)) ® Zy.

Proof. Let U be an open subscheme of spec Oy, such that there is a model of M over U, which
we still denote by M. We have a short exact sequence

0— H YU,M)®7Z — H(UT;M) — T,H(U, M) — 0

as introduced in The group H°(U, M) is finitely generated (that follows by dévissage
from the Mordell-Weil theorem, Dirichlet’s unit theorem and the finiteness of H'(U,Y), see
[(Sz05], Lemma 3.2) hence T,H"(U, M) is trivial. We remain with an isomorphism

HYU,M)®Z; — H°(U, T, M)
but now, observe that H~*(U, M) = ker(Y! — G(k)) and that H°(U, T,M) = (T, M)*. O

Definition 1.10. Let T be an f—adic sheaf on U and let S be a set of closed points of U.
For each p € S let k; be the residue field at p and denote still by 7" the pull-back of T" to
spec kp. We define

HL(U,T) := ker <H1(U, T) — [] H' (5, T)>
pes
Alternatively, in terms of Galois cohomology, let 'y be the Galois group of the maximal
extension of k unramified in U and let D, be a decomposition group of p in I'y;. For every
finitely generated free Z,—module with continuous I'y—action T" we define

H{(Ty,T) := ker (Hl(rU, T) — [ H' (D, T))
pes
Observe that the choice of decomposition groups Dj is unimportant since all decomposition
groups over p are conjugate, and a cocycle ¢ : I'y — T restricts to a coboundary on D), if
and only if it restricts to a coboundary on some conjugate of Dj,.

Proposition 1.11. Let k be a number field, let G be a semiabelian scheme over U and let
X be a subgroup of G(U). Let S be a set of closed points of U of density 1 and write

X :={P € G(U) | redp(P) € redy(X) for allp € S}

Let M = [u: Y — G] be a 1-motive over U where Y is constant and such that u(Y') is equal
to X. For every prime number £ invertible on U there exists a canonical, Zy—linear injection
(Y/X) & Zz — Hé(FU,TgM).

Proof. We have chosen a 1-motive M = [u : Y — G] over U with constant Y, such that
the image of Y — G(U) is X. The image of Y — G(ky) is then X, the reduction of X
modulo p. So, if p is any element of S, then every point P € X maps to zero in H(ky, M)
in the following diagram with exact rows

uy

Y GU) — H°(U,M) — 0=HYU,Y)

| | |

Up

Y G(kp) —= H(ky, M) — 0= H'(kp,Y)
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Denote by [P] the class of P € X in HO(U, M) = G(U)/X. We have seen that [P]® 1 belongs
to the kernel of the map ay in the diagram

0 HY(U,M)® 7, — H"(U,T,M) — T,H (U, M) 0
& e, |
0 [12° s, M) @2y — ] [H (5, TeM) — ] [ TeH (55, M) ——— 0

The rows are those introduced in and the products range over p € S. The f-adic com-
pletions are here just ordinary tensor products because the involved groups are all finitely
generated ([HSz05], Lemma 3.2). We have natural injections

(X/X)®Zy Ckeray C ker By = HE(U, Ty M)

hence the claim. O

Remark 1.12. The injection whose existence we claim in Proposition |1.11]is explicitly given
as follows. Let P be an element of X, and denote by [P] its class in X /X. Choose a sequence
of points (F;)2, in G(k) such that Py = P and such that £P,,; = P; for all i > 0. The image
of [P]® 1 in H}(T'y, T¢M) via the injection under consideration is the class of the cocycle
cp: 'y — TyM given by

cp:o— (0P — P2,

This makes sense since indeed each o P; — P; is a point in G (k) of order £, and together these
points form a compatible system representing an element of the Tate module T,G, which is
a submodule of TyM.

Remark 1.13. Let G be any semiabelian variety over k, let X be a finitely generated sub-
group of G(k) and let £ be any prime number. It is always possible to find an open subscheme
U of spec Oy such that G has a model over U, such that all points in X extend to U—points,
and such that ¢ is invertible on U. Also observe that G(U) is finitely generated, as a direct
consequence of the Mordell-Weil theorem and Dirichlet’s unit theorem.

— 1.14. For a 1-motive M over U we may regard the f—adic sheaf TyM as a finitely generated
free Zy,—module with continuous I'yy—action, as we have explained, I';; being the Galois group
of the maximal extension of k unramified in U. The following definition goes back to an idea
of Tate and Serre: For a Hausdorff topological group I' and a continuous I'-module T" we
write
HI(T,T) := ker <H1(P,T) — =", T))
C<r

the product running over monogenous subgroups C of I'; cohomology being defined by means
of continuous cochains. A subgroup of a topological group is called monogeneous if is topo-
logically generated by one element, that is, if it is the closure of a subgroup generated by one
element. The following two propositions ([Ser64], Proposition 8 and Proposition 6) explain
why the group H}(T'yy, ToM) is interesting.
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Proposition 1.15. Let T be a finitely generated Z,—module with a continuous I'yy—action and
let S be a set of closed points of U of density 1. The subgroups HL(T'y,T) and H:(Ty,T) of
HY(T'y,T) are equal.

Proof. 1t is enough to show that the proposition holds for finite Galois modules of order a
power of £. Indeed, T can be written as a limit of such and the general case follows then
because H' commutes with limits of finite modules, and formation of limits is left exact and
commutes with products.

So let F' be a finite I'yy module of order a power of £. Let ¢ : I'y — F be a continuous cocycle
representing an element of H é(FU, F) and let o be an element of I'y;. We have to show that
the restriction of ¢ to the monogeneous subgroup of I'yy generated by o is a coboundary, that
is, we have to show that there exists an element x € F' such that ¢(o) = oz — x.

Because F' is finite there exists an open subgroup N of I'yy on which ¢ is zero. We may
suppose that N is normal and acts trivially on F. Denote by oy the class of o in I'yy/N.
By Chebotarev’s density theorem (see for example [Neu99] Theorem 13.4), there exists a
valuation v of k£ corresponding to an element p € S and an extension w of v to ky such that
decomposition group of w in I'y /N equals the group generated by opy. Since the restriction
of ¢ to the decomposition group D,, C I'y is a coboundary, there exists a « € F' such that

or)=10—x for all 7 € Dy,

As N acts trivially on F', the same holds for all 7 € D, N, and in particular for 7 = ¢. This
shows that H:(I'y, F) is contained in H!(I'y, F). That H}(I'y, F) is contained in HL(T'y, F)
is clear, since every decomposition group in I'yy corresponding to a place in S is monogenous,
topologically generated by the Frobenius element. O

Proposition 1.16. Let I' be a Hausdorff topological group and let T be a a continuous I'—
module. Let N be a normal closed subgroup of I' acting trivially on T. The inflation map
HYT'/N,T) — HYT,T) induces an isomorphism HY(T'/N,T) = H}(T,T).

Proof. This is straightforward to check, see [Ser64], Proposition 6. O

— 1.17. This has the following interesting consequence: Let us denote by L™ be the image
of 'y in GL(TyM). Together, Propositions and yield a canonical isomorphism

HNLM T M) = HY(Ty, T,M)

Since I'yy is compact this image L is a closed subgroup of GL(T¢M), hence has the structure
of an f—adic Lie group ([Bou72], Ch.III, §2, no.2, théoreme 2). We therefore can apply the
machinery of /—adic Lie theory, and if we have sufficient knowledge of this Lie group and its Lie
algebra, there might be a chance of effectively computing H} (LM, T,M), hence H} (T, T, M).
In the next section we will determine LM as far as we need.
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2. THE IMAGE OF (GALOIS

Let k be a number field contained in C and let M = [Y — G| be a 1-motive over k. To
M and every prime number £ we have associated a finitely generated free Z,—module with a
continuous Galois action TyM. We define

ViM = T/M ®z, Q
so VyM is a finite dimensional Qy—vector space, and we have a continuous group homomor-
phism
pe : Gal(k|k) — GL(V,M)
We have already noted that the image L™ of the map py is a compact ¢-adic Lie subgroup of
GL(V,M). We write M C End(V,M) corresponding Lie algebra. The aim of this section is to

say something halfway useful about the Lie algebra [M. We restrict ourselves to 1-motives of
the form M = [Y — A] where A is an abelian variety (rather than a semiabelian variety).

Definition 2.1. Let M = [Y — A] be a 1-motive over k where A is an abelian variety.
We write Tz (M) for the the pull-back of ¥ and Lie A(C) over A(C) (in the category of
commutative groups) explicitely given by

Tz(M) := {(z,y) € Lie A(C) x Y| exp(x) = u(y)}
and define VoM = Tz (M) ® Q.

— 2.2. The kernel of the exponential map exp : Lie A(C) — A(C) is a finitely generated free
group of rank twice the dimension of A. We have a commutative diagram

0 —— ker(exp) — Tz(M) Y 0

i I

exp

0 — ker(exp) — Lie A(C) — A(C)

0

showing that Tz(M) is a finitely generated free group of rank 2dim A+rank Y. The Q—vector
space VoM has therefore finite dimension 2dim A + rankY. The C—vector space VoM ® C
carries a Hodge decomposition of type (0,0),(0,1),(1,0) ([Del74], Lemme 10.1.3.2), hence
VoM is a rational mixed Hodge structure. It is called the rational Hodge realisation of M.
By construction we have a short exact sequence

00— VA — VM —Y®Q —0

and there is a canonical lift fj : ker u ® Q — VoM of the inclusion of keru @ Q C Y ® Q. The
next proposition is Deligne’s construction 10.1.6 of loc.cit.

Proposition 2.3. For every prime number £ there is a canonical and natural isomorphism
of Qg—vector spaces VoM @ Qp = V, M.

Proof. We show that there is even a natural isomorphism of Zy—modules Tz (M)®Z; = TyM.
To do so, we must show that there are natural and compatible isomorphisms of finite groups

(7T (M) [ T7(M) —— Ty i (M) (k)
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Indeed, elements of Tz (M) are pairs (y,x) € Y x Lie A(C) such that u(y) = exp(z). Hence
elements of ~*Ay; are pairs (y,2) € Y x Lie A(C) such that (lu(y) = ¢exp(x). Using
the expression for 77 iz (M )(k) introduced in H we must show that there is are natural

isomorphisms
{(y;2) €Y x Lie A(C) | C'u(y) = L exp(z)} = {(y,P) €Y x A(k)|u(y) = £'P}
{(y,z) € Y x Lie A(C) | u(y) = exp(x)} {(tly,uly)) |y € Y(k)}

The isomorphisms we are looking for are given by (y,z) — (¢y,exp(z)). Compatibility is
straightforward to check and naturality is clear from the construction. O

— 2.4. Let M = [Y — A] be a 1-motive over k where A is an abelian variety. There are
obvious morphisms of 1-motives

Al0] — M — Y[1]

where A[0] denotes the 1-motive [0 — A] and Y'[1] denotes the 1-motive [Y" — 0]. These
morphisms induce a short exact sequence of Galois representations as well as a short exact
sequence of rational Hodge structures

00— VA—VM-—YRQ, —0 and 0 — VA — VM —Y®Q—0

These exact sequences are compatible in the sense that the underlying exact sequence of
Q¢—vector spaces of the f—adic realisations is canonically isomorphic to the underlying exact
sequence of Q—vector spaces of the Hodge realisation tensored with Q. This follows from
Proposition Observe that VyA is the usual /-adic Galois representation associated with
A, obtained by tensoring the f-adic Tate module lim A(k)[¢] with Qp, and that VoA is
canonically isomorphic to the singular homology group H;(A(C),Q), which also is a rational
Hodge structure of pure weight 1.

— 2.5. Let M = [Y — A] be a 1-motive over k where A is an abelian variety. Let k be
an algebraic closure of k and set I' := Gal(k|k). We write L™ and LA for the image of T
in the group of Qylinear automorphisms of Vy,M and VyA respectively, and we denote by
LfX[ the stabiliser of VpA in LM. We have thus a short exact sequence of f-adic Lie groups
0 — L% — LM — 4 — 1 and associated with it is a short exact sequence of Lie
algebras
O—>[%.>[M->[A.>O

The Lie algebra [% acts trivially on Y ® Qg and on V;A. Hence it is commutative and may
be identified with a Q-linear subspace of Hom(Y ® Q;, VpA). To determine [M amounts to
determine the Lie algebras [4 and [% and to determine how [M is an extension of [4 by [% .
We can now formulate the main results of this section.

Definition 2.6. For every a 1-motive M = [u:Y — A], where A is an abelian variety, we
write h% for the Q-linear subspace of Hom(Y ® Q, VyA) consisting of those homomorphisms
[ such that ¥ f(y1) + -+ + ¥nf(yn) = 0 whenever ¢; € End; A and y; € Y are such that

Yru(yr) + - + You(ys) = 0.



DETECTING LINEAR DEPENDENCE ON AN ABELIAN VARIETY VIA REDUCTION MAPS 11

Theorem 2.7. Let M = [u:Y — A] be a 1-motive over k where A is an abelian variety.
The equality f)% ®Qp = [% holds for all prime numbers £. In particular the dimension of [JXI
1s independent of L.

The result is not really new, it essentially is a reformulation of a theorem of Ribet [Rib76]
(see also [Hin88], Appendix 2). While the inclusion b% ®Qy D [% is elementary to show,
the inclusion in the other direction uses Faltings’s theorem on homomorphisms of abelian
varieties over number fields ([Fal83]) as well as Bogomolov’s theorem on the image of the
Galois group in the automorphisms of the Tate module of an abelian variety ([Bog81]).

— 2.8. We will moreover construct a Lie subalgebra b of End(VoM) with the following
properties. The Lie algebra hM leaves VA invariant and acts trivially on ¥ ® Q. The
stabiliser of VoA in hM is the Lie algebra b% defined in So there is a short exact
sequence
0— by —p" —pt —1

where b4 is the image of h™ in the endomorphisms of VyA. The Lie algebra h# is chosen in
such a way that B ® Qy is contained in [, and in the case where the equality h* @ Q, = (4
holds, the equality h™ ® Q; = M holds as well. We would of course like to take for h* a Lie
algebra such that for every prime number ¢ the equality

bt @ Q= 14

holds. The Mumford-Tate conjecture states that such a Lie algebra exists and that it is the
Lie algebra associated with the Mumford—Tate group of A. We do not want to assume this
conjecture here.

— 2.9. Notation: For a nontrivial abelian variety A over k and every prime number ¢ we
let hA = h@) denote any Lie subalgebra of End(VyA) having the following properties

(1) As an h*~module VoA is semisimple.

(2) The Lie algebra h* is contained in the commutator of Endz(A) in End(VoA).
(3) The identity endomorphism of VoA belongs to h4.

(4) The Lie algebra [4 contains b4 @ Q.

Such a Lie algebra indeed exists, we could just take h* to be the commutative 1-dimensional
Lie algebra Q acting as scalar multiplication on VyA, independently of ¢. A Theorem of
Bogomolov ([Bog81], Theorem 3) asserts that the Lie algebra [4 contains the scalars. Bo-
gomolov’s Theorem even assures that we can take h* such that the equality [* = §* @ Qy
holds, but then h* might depend on ¢. If the Mumford-Tate conjecture holdsfor A we can
take b to be the Lie algebra of the Mumford-Tate group of A.

— 2.10. We now come to the proof of Theorem which we split up in several lemmas. We
start with three preliminary remarks.

(a) In proving Theorem We can without loss of generality replace k by a finite extension
of k. Indeed, if we do so the group LM gets replaced by a subgroup of finite index, which has
then the same Lie algebra as L™ . In particular, we can and will assume from now on that Y’
is constant and that all endomorphisms of A are defined over k.
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(b) The fppf-sheaf Hom(Y, A) on speck is representable by a power of A. The morphism
u:Y — A s a k—rational point on Hom(Y, A), and we denote by B the connected compo-
nent of the smallest algebraic subgroup of Hom(Y, A) containing . In proving Theorem
we can without loss of generality suppose that u belongs to B. Indeed, the smallest algebraic
subgroup of Hom(Y, A) containing u has only finitely many connected components because
Hom(Y, A) is proper, hence for some m > 0 the point mu belongs to B. The morphism of

1-motives
(m,id)

v - A v 2 A]

induces isomorphisms under the realisation functors Vy(—) and Vp(—), so we may replace u
by mu.

(c) Let us write £ := End; A®Q and denote by R the Q-linear subspace of EQY generated
by the elements 11 @ y1 +- - -+, ®y, € Endz A®Y such that Yyu(yr) +- - +¥pu(y,) = 0 in
A(k). The subspace R of E®Y is obviously an F-submodule. We have a canonical pairing

(——):(F®Y)xHom(Y ® Q, VyA) — VA
defined by (¢ ® y, f) = ¥ f(y). By definition h4! is the annihilator of R in this pairing.

Lemma 2.11. There is a canonical and natural isomorphism of E-modules VoHom(Y, A) =
Hom(Y ®Q, VoA). Under this isomorphism Vo B C VoHom(Y, A) and b3l € Hom(Y ®Q, Vo A)

correspond to each other.

Proof. We choose a Z-basis y1,...,y, of Y so that we can identify Y with Z" and hence
the abelian varieties Hom(Y, A) and A". This identification is natural in A, and the point
u of Hom(Y, A) corresponds to the point (u(y1),...,u(yr)) of A". We get isomorphisms of
E-modules

VoHom(Y, A) = Vo(A") = (VoA)" = Hom(Y ® Q, Vo A4)

whose composition is independent of the choice of the basis of Y. An element x of Vy(A") C
Lie A"(C) belongs to Vy B if and only if the one parameter subgroup exp(Rz) of A"(C) is con-
tained in B(C). It follows from Poincaré’s Reducibility Theorem ([Mum70] IV.19, Theorem
1) that a connected subgroup of A"(C) is contained in B if and only if it is contained in ker )
for every morphism v : A" — A such that ¢(B) = 0. By minimality of B we have )(B) =0
if and only if ¢(u) = 0, hence we find

x € VoB <= Y(exp(Rx)) =0 for all ¢ € Hom(A", A) such that ¥(u) =0

But now observe that ¢ (exp(Rz)) = exp(Re¢z) and that to say that exp(R¢z) = 0 is the
same as to say that ¢z = 0. If we denote by 91,...,1, the components of ) € Hom(A", A),
we therefore have

x € VoB <= yx =0 for all ¢1,...,¢, € End A with Y1u(y1) + - + Yruly,) =0

If we now look at z € Vy(A") as being a homomorphism ¥ ® Q — VpA via the isomorphism
we have introduced, the condition that )2 = 0 for all ¢) means that x belongs to hi\ff . g

Lemma 2.12. Let M = [Y — A] be a 1-motive over k where A is an abelian variety, and
let £ be a prime number. The Lie algebra [% s contained in f)% ® Qp.
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Proof. Let 1 = 1 @ y1 + - -+ + ¥, ® yp be an element of R and let us show that we have
(r,xz) = 0 for every x € [% . Replacing r by some multiple of » we may suppose that the ;
are actual endomorphisms of A. We must show that for every o € L% we have (r,logo) = 0.
We have logo = o — 1, so what we have to show is that for all o € Gal(k|k) acting trivially
on TyA we have (r,c — 1) = 0. For every y;, let v; be an element of T;M mapping to y; ® 1
in Y ® Zy. Using our explicit description of the Tate module TyM given in we may write

these preimages as sequences v; = (Pij,yi);?io where the Pj; € A(k) are points such that
Pijo = u(y;) and £P; j;1 = P;j for all j > 0. Now we compute

(r,o—1) = Z%’(fwi —v;) = Z@bi(gpij — Pj)iZ0 = UZ(%PU)?;O - Z(%Pij)?o:o
=1 =1 =1

By definition of R we have 11 Pig + - - - 4+, Pno = 0 hence 91 Pij + - - - + ¢, P, is an element
of order #/ in A(k). But by hypothesis o acts trivially on T,A, hence on all #/—torsion points

of A(k). Therefore, the right hand side of the above equality is zero. O

Lemma 2.13. Let M = [Y — A] be a 1-motive over k where A is an abelian variety, and let
¢ be a prime number. There is a canonical isomorphism H*(LM V,A) = Hompa (LY, V,A).

Proof. The Hochschild—Serre spectral sequence furnishes an exact sequence in low degrees
0 — HY(LA, Vi A) — HY(IM, V) 21 HOLA, HY (LY V,A)) — H2(LA, Vi A)

By Bogomolov’s theorem ([Bog81] Theorem 3) there exists an element in L4 which acts as
multiplication by a scalar # 1 on Vy,A. Thus, by Sah’s Lemma the first and last term in the
above exact sequence vanish, and so the map labelled (x) is an isomorphism. Since L% acts
trivially on V,A by definition, we have H(LA, HY (LA, V,A)) = Homa (LY, V,A). O

Lemma 2.14. There is a canonical, injective Zy—linear map
Homy, (B, A) ® Zy — H' (LM, T,M)

Proof. Let us write kjs for the field extension of k whose Galois group is the quotient LM
of I' = Gal(k|k). By our explicit description of the Tate module of M , this kjs is the
smallest field extension of k such that for all y € Y all /-division points of u(y) are defined
over kpr. In other words, kps is the smallest extension of k such that all elements of u(Y")
become (—divisible in A(kps). Any point P € A(k) which is an Endy A-linear combination
of points in u(Y) becomes then divisible in A(kys) as well. We consider now the following
diagram
Homy (B, A) ® Zy

e l(l)
- (2) ~
0 K Alk) ©Zg —> Alkar) B Z

i () l (5) i (6)

3
0 = HYIM T A) — H(k,ToA) L H kg, ToA)

Let me explain the maps. First, the map (1) is induced by the map Homy (B, A) — A(k)
sending a homomorphism ¢ to the rational point ¢(u). The maps (2) and (3) are induced by
the inclusion of fields k& C kjp;. We use here that A(k) is finitely generated, so A(k) ® Zy is



14 PETER JOSSEN

the same as A(k)®Zy. The vertical maps (5) and (6) are the maps in the Kummer sequences
introduced in (for i = 1), so they are both injective. We define K to be the kernel of (2).
From the Hochschild-Serre spectral sequence we see that the kernel of (3) is H'(LM, T A).
The map (4) is then the restriction of (5) so that the diagram commutes. Since (5) is injective,
(4) is injective as well.

Having this diagram, all that remains to show is that the dashed arrow exists and that it
is injective. In other words, we have to show that (1) is injective and that the composition
of (1) and (2) is zero. The map (1) is injective because Z; is a flat Z—module and because
already the map Homy (B, A) — A(k) is injective. Indeed, let ¢ : B — A be a morphism
of abelian varieties such that ¢(u) = 0 € A(k). The kernel of ¢ is then an algebraic subgroup
of B containing u, hence equal to B by minimality of B, and so ¢ is zero. The composition
of (1) and (2) is zero. Indeed, for every homomorphism ¢ : B — A the point ¢(u) is an
Endy A-linear combination of points in u(Y'), hence p(u) is ¢—divisible in A(kps), and hence
the class of p(u) in A(kys) ® Zy is trivial. O

Remark 2.15. Explicitly, the map whose existence we claim in the lemma is the following.
Given a homomorphism ¢ : B — A, it sends ¢ ® 1 to the class of the cocycle

cp:0— (0P — P;)i2q € T/A

where (P;)$°, is a sequence of points in A(k) such that Py = ¢(u) and £P;1; = P;. As we shall
see in a moment, this map has a finite cokernel. It is then not hard to see that the points of
P € A(k) which become divisible in A(kjs) are precisely those points such that that for some
integer m > 0 the point mP is an Endy A-linear combination of points in u(Y"). This relates
Theorem with Ribet’s Main Theorem in [Rib76] on dividing points on abelian varieties.

Proof of Theorem[2.7]. By Faltings’s theorem on homomorphisms of abelian varieties over
number fields, and because we suppose that all endomorphisms of A are defined over k, we

have a canonical isomorphism Homy (B, A) @ Q; = Homa (VyB, V;A) By Lemma we have
a canonical isomorphism H'(LM,V;A) = Hom (LY, V,A). Together with Lemma this
yields an injection

Homa (V; B, Vo A) = Homy (B, A) @ Qp — Homu (14, V,A)

We have seen in Lemma that the inclusion [% - h% ®Qr = VyB®Q = V;B holds. Let
us then consider the restriction map

Homa (Vi B, Vi A) — Homu (14, V,A)

Because V/A, V;B and [% are all semisimple [4-modules by Faltings’s results, this map is
surjective and it is injective if and only if the equality [% = V;B holds. This is indeed the
case, for dimension reasons. O

— 2.16. We now come to the construction of the Lie algebra h™ C End(VyoM) which will be
an extension of h* by h% as announced in Let M = [u:Y — A] be a 1-motive over k
where A is an abelian variety, and consider the 1-motive

M+:[U+EndEA®Y%A]
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given by u4 (¥ ®y) = vu(y). There is a canonical morphism of 1-motives M — M inducing
a diagram

0 VoA — S VoM — 2~y eQ 0
0 VoA VoMy 22 End; A9Y ®@Q —— 0
N
keruy ® Q

Because the map uy is a map of End; A-modules, the maps in the lower exact sequence as
well as the canonical lift § (cf. [2.2) are maps of E := End; A ® Q-modules. Because E is
a semisimple Q-algebra ([Mum70], IV.19 Theorem 1) we can choose an E-module section
s+ of py extending . Denote by s the restriction of s; to Y ® Q. This s takes values in
VoM and is therefore a section of p. We now give the definition of h™ and proceed then with
checking that this definition makes sense.

Definition 2.17. Let s be a section of the canonical projection VoM — Y ® Q such as
constructed in We define h™ to be the Lie subalgebra of End(VoM) consisting of those
endomorphisms which are of the form

(e, f)s v+ s(y) — ev+ f(y) forallve V\AC VoM, y e Y ®Q

for some e € h** and some f € h% C Hom(Y @ Q, Vo A).

Proposition 2.18. The set of endomorphisms §™ of VoM defined in is indeed a Lie
subalgebra of End(VoM). Moreover, h™ does not depend on the choice of the section s.

Proof. The set h™ is a linear subspace of End(VoM). In order to show that b is a Lie
subalgebra we must show that h™ is closed under taking commutators. Indeed, the formula
[(e, f)s, (e, f)s] = (le, €], e0 f' — €' o f)s holds, and e o f' — €’ o f is again an element of h
because the composition of f € f)% with any endomorphism of VyA again belongs to h% by
definition of hi“/f . We now show that h is independent of s. Consider again the diagram
of let sy and ¢t; be E—module sections of p, extending § and write s and t for their
restrictions to Y ® Q. We claim that the difference d := s —t:Y ® Q — VpA belongs to
h% . Indeed, observe that the objects introduced in c reappear in the diagram of
namely
End;AY®Q=EQY and keruy @ Q=R

We have (d,r) = 0 for all »r € R because s; and ¢, are E-module maps that coincide on R,
and that means by definition that d belongs to h% . From this we can deduce that the Lie
algebras constructed as in the definition from s and from ¢ respectively are the same.
Indeed, the equalities

(e,f)s=(e,f—eod): and (e, fle=1(e,f+eod)s

hold for all e € h* and all f € hA C Hom(Y ® Q, VyA). We have seen that d belongs to h!
hence so do f —eod and f + eod. That does it. O
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Corollary 2.19 (To Theorem 2.7)). Let M = [u: Y — A] be a 1-motive over k where A is
an abelian variety and let ¢ be a prime number. The Lie algebra ™M contains h™ @ Qy, and
the equality ™M = p™ © Q holds if and only if the equality 1* = h* @ Q, holds.

Proof. Define My and choose s as in and construct the Lie algebra h™ as in Definition
[2.17 from this data. We still denote by s; and by s the Q-linear extensions of s; and s, so
we have a split short exact sequence of Qy—vector spaces

s
c

0 VA VoM - Y ®Q

The “Y—module 3! can be identified with a submodule of Hom(Y ® Qy, VyA) >~ VA", Since
VyA is a semisimple [4-module by Faltings’s results, [% is isomorphic as an [4-module to
a direct factor of a power of V;A. Bogomolov’s Theorem ([Bog81], Theorem 3) and Sah’s
Lemma imply that

H(A,V,A) =0 and  H(A,Hom(Y @ Q, V;A) =0 and  H (A, ) =0

for all i > 0. The vanishing of H2(I4, [}]) implies that the Lie algebra extension given in
is split ([Wei94], theorem 7.6.3), we can therefore choose a splitting o of the projection map
7 as indicated.

[MK_\[A

N

0 (A 0

Using the splittings s and o we fabricate a map c : [4 — Hom(Y ® Q, V;A) by setting
c(x)(v) = o(x)s(v) forallz et veY ®Q

This map is a cocycle, hence a coboundary because H'(I4, Hom(Y ® Qy, V;A)) vanishes. So,
there exists a Qy—linear map f: Y ® Q; — VyA such that

o(e)s(v) =e.f(y) forall e € [A,y cY ®Q,

We claim this f belongs to [% . in order to check this it suffices by Theorem to show that
for all y1, -y, € Y and all ¥1,...,9, € End; A such that ¥yu(yr) + - + Ypu(y,) = 0 we
have 1 f(y1) + -+ + ¥nf(yn) = 0. Indeed, we have

n n n

S vif ) = 3 io(@)s(y) = o(@).s1 (D vi @ i)

i=1 i=1 i=1
Here we have used that the 1); commute with elements of [ and End; A-linearity of s;. By
hypothesis s; sends elements of keruy ® Q, to (V;M )[M, hence the right hand side of the
above equation is zero. The map [4 — M given by x — o(z) — x.f is therefore another
section of m. Let us replace o by this new section. By construction we have now o(e)s(y) = 0
for all e € 14 and all y € Y ® Qy, hence

(o(e) + f).(v+s(y)) = ev + f(y) forallec, fellve VA yecY oQ

Since [4 contains h* @ Q; and [% is equal to h% ® Qy, this shows that [M contains h™ @ Q,
and that the equality [M = h™ @ Q holds if and only if the equality (4 = h4 ® Q, holds. O
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Remark 2.20. We have left two important things undiscussed. First, we have only worked
with 1-motives whose semiabelian part is an abelian variety. The benefit we had from this
was Poincarés Reducibility Theorem and semisimplicity of various objects associated with
the abelian variety. It would of course be desirable to have a statement as Corollary for
general 1-motives. Secondly, we have given the Lie algebra h™ by an ad hoc construction.
This construction should be compared with the Mumford-Tate group associated with the
mixed Hodge structure VoM, which one may define directly in terms of Tannakian formalism.

3. SOME LINEAR ALGEBRA

The 1-motives we are working with in this section are of the form M = [Y — A] where
A is a geometrically simple abelian variety over k. I recall that this means that A has no
abelian subvariety defined over k other than 0 and itself. Our goal is to prove the following
technical result.

Proposition 3.1. Let M = [Y — A] be a 1-motive over k where A is a geometrically
stmple abelian variety, and let £ be a prime number. The image of the bilinear map

o s (VM)* x M — (V,M)*

given by ay(m,x) = mox consists precisely of those linear forms on VoM which are zero on
the subspace ker u®@Qyq of VeM. In particular, the image of ay is a linear subspace of (VM )*.

— 3.2. Here is the setup for this section. We fix a finite dimensional division algebra E over
Q, a nontrivial E—module V7 of finite rank and a Q—vector space of finite dimension V{;. There
is a canonical pairing
(—, =) : (F®Vy) x Hom(Vp, V1) — Wy

given by (¢ ® y, f) = ¥ f(y). Furthermore, we fix an E-submodule R of F' ® Vj and define
br € Hom(Vp, V1) to be the annihilator of R in this pairing. The following proposition
remains valid if one replaces E by a finite product of division algebras over Q — the price to
pay are more indices.

Proposition 3.3. In the situation of[3.4, let  be a nonzero linear form on Vi and let v be
an element of V. The equality w(f(v)) = 0 holds for all f € br if and only if 1p ® v belongs
to R.

Proof. If 15 ® v belongs to R then f(v) = 0 for all f € hr by definition, so the if part is
obvious. To prove the converse, let us fix an element v € V{) such that

mf(v) =0 for all f € hgr

We must show that 1p ® v belongs to R. Let us choose a Q—basis of Vy as follows. We
begin by choosing elements y1,...,y, € Vg such that 1p ® y1,...,1g ® y, form an E-basis
of (E ® Vp)/R. These elements are K-linearly independent, hence we can choose elements
21,...,%2s of Vo completing y1,...,y, to basis of Vj. There exist unique elements v;; of E
such that forall 1 < j <s

ri=1lp® 2z — (Y1 @y + -+ Yjr @ Yr)
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belongs to R. We claim that a homomorphism f : Vj — Vi belongs to hr if and only if the
relations

f(zj) = flyr) + -+ i fyr) forall1<j<s

hold. In other words we claim that f belongs to hg if and only if (r;, f) = 0 holds for
1 < j < s. Indeed, since r; € R, every f € hr must satisfy (f,r;) = 0 by definition.
On the other hand, we must show that if (r;, f) = 0 holds for 1 < j < s, then we have
(r,f) = 0 for all » € R. This is the case because R is E-linearly generated by ri,...,7s.
Indeed, we can write every r € Rasr =91 Qy1 + -+ U QUr + 901 @ 21 + -+ + s ® 2.
After subtracting @171 + - -+ + @srs from r we remain with an element ' € R of the form
7' = @y1+- -+ @y,. But this element can only be zero because the 1p®y1, ..., 1@y,
are an E-basis of (F ® Vp)/R.

In summary, if we want to give an element f € h C Hom(Vj, V1), we may freely choose the
values f(y1),..., f(yr) € V1, and must then follow the rules f(z;) = ¢1;f(y1)+- -+ ¢rj f(yr)
to determine the value of f on the remaining basis elements z1, ..., z.

Let us write v = a1y1 +- - + oy + B121 + - - - + B4z for scalars a; and §8; € Q, and define
elements p1,...,p, of E by

pi = ilp + B + -+ + Bssi
for 1 <4 <r. Using these definitions, the relation 7(f(v)) = 0 becomes
T S T T S T
0= w<z aif (yi) + Zﬁjﬂzj)) = w(Zaiﬂyi) +) Zﬁjwif(yi)) =7y pif (vi)
i=1 j=1 i=1 i=1 j=1 i=1

For every 1 < i < r and every = € V) there exists an f € hr such that f(y;) = = and
flyx) = 0 for k # i. The above relation shows thus in particular that 7(p;(z)) = 0 for all
x € V7, that is, m o p; = 0. Since 7 is nonzero, this means that p; is not invertible, and since
E is a division algebra, we find p; = 0. Thus, the equality

0=0ailp @y + B1v1i QUi + -+ + Bsthsi @ s

holds in £ ® Vj for all 1 < ¢ < r. Summing over all ¢ yields then

T S T T S S
0= ailg@u+Y B Y vu®y=Y alp@yi+» Bile®z—Y B
i=1 =1 = i=1 =1 i=1

1p®uv

Hence 1 ® v = By1r1 + - - - + Bsrs belongs to R, and that is what we wanted to show. O

Proposition 3.4. Let M = [u:Y — A] be a 1-motive over k where A is a simple abelian
variety. The image of the bilinear map

ag : (VoM)* x pM — (VoM)*

given by ag(m,x) = 7o x consists precisely of those linear forms on VoM which are zero on
the subspace ker u®Q of VoM . In particular, the image of g is a linear subspace of (VoM )*.

Proof. Let us fix a linear section s : (Y ® Q) — VoM such as in the construction of h*, so
that every element of h™ is of the form

(e, f)s v+ s(y) — ev+ f(y) forallve ViA, y e Y @ Q
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for some e € h* and some f € f)% . Using this section, every linear form 7 on VoM can be
uniquely written as m = (w4, my ), where m4 is a form on VpA and 7y is a form on Y ® Q.
With this notation, the map «g in the proposition becomes

ao: ((ma,my), (e, f)s) — (Tace,mao f)

For every linear form (74, 7y) on VoM, every element (e, f)s of b and every y € keru ® Q
we have (m40e,m40 f)s(0,5(y)) = f(y) = 0 by definition of ¥, so all forms in the image of
o annihilate ker u ® Q. On the other hand, let (n4,7ny) be a linear form on VoM such that
Ny (y) =0 for all y € ker u. Let us define

id ifna#0
€=
0 ifna=0

(n4,0) if na #0

and TA, Ty ) 1=
(ma,7v) {(TI'A,O) for some w4 #0 ifng =0

In order to make use of Proposition we specialise the objects introduced in as follows.
We take E to be the Q-algebra Endy(A)®Q, which is a division algebra according to [Mum70],
IV.19 Corollary 2 to Theorem 1. Then Vi := VhA is an E—module of finite rank, and we
specialise Vp := Y ® Q. Finally we let R be the F—submodule of £ ® (Y ® Q) introduced in
c, so that according to Definition we have hr = b% . Proposition states that the
image of the linear map h]X[ — (Y ® Q)* given by f —— w4 o f is equal to the annihilator
of the subspace keru ® Q of Y ® Q. In particular there exists an element f € h% such that
w4 o f =mny. With this choice of f we have

Ck(]((WAﬂTY), (67 f)s) = (WA ©0€,mTp 0 f) = (77A;77Y)

in both cases, n4 = 0 and n4 # 0. This proves the proposition. O

— 3.5. It follows from Theorem (or rather its Corollary that the Qy—bilinear map
in Proposition [3.1] is obtained from the Q-bilinear map of Proposition by extension of
scalars. However, it is not clear whether or not the property of a bilinear map to be surjective
is invariant under scalar extension. Let L| K be an extension of fields. Given finite dimensional
K—vector spaces U, V,W and a K-bilinear map Bk : U x V — W, denote by (G the L—
bilinear map obtained from [x. Which of the following implications is true (for a fixed field
extension L|K and all K—bilinear maps i between finite dimensional K—vector spaces)?

. .. a b . ..
Br is surjective <:) :)> B is surjective

We were unable to find a satisfying answer to this general problem. Our next proposition
shows that the implication b) holds for the extension Q;|Q, and that is all we need.

Aside 3.6. There exist Q-bilinear maps § : U x V. — W which are not surjective, but
which become surjective after base change to any completion of Q. For instance the bilinear
map [ : Q3 x Q3 — Q* given by

B((u1, uz,u3), (v1,v2,v3)) = (u1v1, u2v2, uzvs, (U1 + uz + usz)(vy + v2 + v3))

has this property. This example is due to Bjorn Poonen.
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Proposition 3.7. Let V,V' and W be Q-vector spaces and let o : V x V' — W be a
bilinear map. Let K be either the field of real numbers or the field of £—adic numbers for
some prime number £. If the image of o is a linear subspace of W, then the image of the
mduced K—bilinear map

ag (Vo K)x (VoK) — W®K
is a linear subspace of W ® K, and the equality im ax = ima ® K holds.

Proof. To ease notation let us define Vg := V ® K and analogously V. and Wg. The image
of a is certainly contained in the K-linear subspace ima ® K. We may thus, replacing W
by im «, suppose without loss of generality that « is surjective. We have to show that ajy is
surjective as well. We consider the projective spaces

PV i= (V\{0})/Q" and PV = (Vi \ {0})/K"

Because Q is dense in K, the subset PV is dense in PV, and again the same goes for V’ and
W in place of V. The map « induces well defined maps

a:PV x PV — PW and ag : PV x PV}, — PWg

Considering PV xPV" as a subset of PV x PV}, the map @ extends to @, hence in particular
the image of @ contains the dense subset PW of PWg. On the other hand, the topological
spaces PVi and PV} are compact, hence so is their product, and the map @ is continuous.
Thus, the image of @x must be compact, hence closed, and therefore consist of all of PWi.
But then, surjectivity of ag immediately follows from surjectivity of ag. O

Proof of Proposition[3.1. On one hand, let 7 be a linear form on VM and let  be an element
of (M. For every v € keru ® Qp C V,M we have z.v = 0 and hence 7(z.v) = 0. On the other
hand, let i be a linear form on V,M which is trivial on ker u ® Q;. By Corollary the Lie
algebra [M contains h™ ® Qy, hence it is enough to show that the image of the bilinear map

(VeM)* x (0™ @ Q) — (V,M)*

contains all linear forms on VM = VoM ® Q,; which are trivial on keru ® Q. Indeed, that
follows from Proposition [3.4] and Proposition U

4. PROOF OF THE MAIN THEOREM

For this section we prove our main theorem as announced in the introduction. Our strategy
is as follows: Given a geometrically simple abelian variety A over the number field k£ and a
subgroup X of k, we consider the group

X = {P € A(k) | redp(P) € redy(X) for all p € S}

where S is any fixed set of places of k of density 1 where A has good reduction. The main
theorem states that for all X and all S the equality X = X holds. A simple argument will
show that in order to prove this equality, it suffices to prove that the quotient group X /X is
torsion free. Since X /X is finitely generated, it is enough to show that for all primes ¢ the
group (X /X)®Zy is torsion free. But then, using Propositions and this amounts to
show that the group H'(LM, T,M) is torsion free for a suitable 1-motive M. Our program
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consists now of establishing a general condition ensuring that H}(L,T) is torsion free for an
{—adic Lie group L acting on a finitely generated free Z,—module T, and then to show that
LM acting on TyM meets this condition.

Key Lemma 4.1. Let T be a finitely generated free Zy—module, let L be a Lie subgroup of
GL(T) with Lie algebra | and set V :=T & Q. Suppose that

(1) The set {mox |z €l,m € V*} is a linear subspace of V*
(2) The equality V* = V' holds.

Then the group H}(L,T) is torsion free.

— 4.2. The proof needs some preparation. Let us introduce the following ambulant termi-
nology: Given a finitely generated free Zy—module T" and a Lie subgroup L C GL(T) as in
the Lemma, we say that L acts tightly if the equality

N (T+V9)=T+V*"

geL
holds, where V := T ® Q. The inclusion O always trivially holds. More generally, if V5 is
another Qy—vector space we say that a family of linear maps ® C Hom(V, V2) is tight if the
equality

(%) ﬂ (T +kerp) =T + ﬂkergp

ped ped
holds. Again the inclusion D is trivial. So, L acts tightly on V' if and only if for V5 = V the
family {(¢g — 1v) | ¢ € L} is tight. The following lemma shows how this is related with the
torsion of H!(L,T).

Lemma 4.3. Let T be a finitely generated free Zy—module, let L be a Lie subgroup of GL(T)
with Lie algebra | and set V := T ® Qq. If L acts tightly on V then the group H!(L,T) is
torsion free.

Proof. Let ¢ : L — T be a cocycle representing an element of H!(L,T)[/], and let us show
that c is a coboundary. As fc is a coboundary, c is a coboundary in H!(L, V') and there exists
an element v € V such that ¢(g) = gv — v for all ¢ € L. To say that the cohomology class
of ¢ belongs to the subgroup H}(L,T) of H'(L,T) is to say that for all g € L, there exists a
ty € T such that c(g) = gty — t;. We find that

(9—1v)tg= (9 — 1v)v forall ge L

or in other words v —t, € ker(g — 1y), that is to say v € T'+ V9. This is true for all g € L
and since L acts tightly this implies that v = t 4 v, for some ¢ € T' and some vy € V. Hence
c(g) = gt —t is a coboundary as needed. O

Lemma 4.4. Let V and Va be Qq~vector spaces with linear duals V* and and V5 let @ be a
linear subspace of Hom(V, Va). If the set ¥ :={mop|p € &, 7 € V5'} is a linear subspace of
V*, then ® is tight.
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Proof. In (x), the inclusion D holds trivially, we have to show that the inclusion C holds as
well. We have

ﬂ (T—l—kergp) C ﬂ (T—|—ker¢) and ﬂ ker p = ﬂ ker e
ped PeV ped Ypew

Hence, it is enough to show that the lemma holds in the case where Vo = Q; and & = .
Write W for the intersection of the kernels ker ¢, so that

W={veV|p)=0forall p € d} and b ={pecV*|p(w)=0foral we W}

Here we use that ® = U is a linear subspace of V*. Because T'/(1T'N W) is torsion free the
submodule W N T is a direct factor of T (every finitely generated torsion free Zy,—module
is free, hence projective), hence we can choose a Zy-basis e1,...,€es,...,e, of T such that
e1,...,es make up a Zsy—basis of W NT. Let v be an element of V that is contained in
T + ker ¢ for all ¢ € ®. We can write v as

v = )‘161 +--- Ases +)\s—|—les+1 +--+ Arer
ew

where the A; are scalars in Q. Taking for ¢ the projection onto the i—th component for
s < i < r shows that A\; € Zy for s < i < r. Hence Ag11€541 + -+ + Arer € T, and we find
that v € W + T as required. O

Proof of Lemma[{.1l Let H be an open subgroup of L such that the logarithm map is defined
on H. Such a subgroup always exists, and the exponential of log h is then also defined and
one has explogh = h for all h € H ([Bou72], Ch.II, §8, no.4, proposition 4). The Lie algebra
of H is also . Let h be an element of H and set ¢ := logh, so that h = exp ¢. We claim that
equality V" = ker ¢ holds. On one hand if hv = v, then the series

h —1)? h— 1)
p(v) =logh(v) = (h —1)(v) — (2)(1)) I (_1)n—1(n)(v) n
is zero, whence V" C ker ¢. On the other hand, if ¢(v) = 0, then the series

2 n
prv) et
2 n!

is trivial except for its first term which is 1y (v) = v, whence the inclusion in the other
direction. The Lie algebra [ is a linear subspace of End V' satisfying the hypothesis of Lemma
Using this lemma and the hypothesis (2) we find

h(v) = expp(v) = 1y (v) + ¢ (v) +

N@T+Vv9) € T +kerp) 2 T4V = T4VE

geL pel
hence L acts tightly on V. By Lemmathis implies that H}(L,T) is torsion free as claimed.
Mind that in the second intersection it does not matter whether we take the intersection over
¢ € lor ¢ € log(H), because every element of [ is a scalar multiple of an element in log(H). O

Corollary 4.5. Let M = [u : Y — A] be a 1-motive over a number field k where Y is
constant and A is a geometrically simple abelian variety. The group H} (LM, T,M) is torsion
free.
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Proof. We check that the two conditions of Lemma[4.] are satisfied. The first condition holds
by Proposition [3.1] To check the second condition, we have to show that for every subgroup
N of LM of finite index the equality (V,M)E" = (V,M)N holds. It is enough to show this for
normal subgroups, so let us fix a normal subgroup N of LM, and denote by k' the subfield
of k fixed by the preimage I'" of N in I' := Gal(k|k). So k' is a finite Galois extension of k,
and what we have to show is that the inclusion

(T,M)T C (TM)™

is an equality. Indeed, by Proposition[I.9 and because Y is constant both of these submodules
of TyM are equal to (keru) ® Zy. O

Proof of the Main Theorem. We fix a geometrically simple abelian variety A over a number
field k with algebraic closure k. We also choose a model of A over an open subscheme U of
spec Oy, which we still denote by A, and we fix a set S of closed points of U of density 1. For
every subgroup X of A(k) we define

X :={P € A(U) | redp(P) € redy(X) for all p € S}

Our aim is to show that for all X C A(k) the equality X = X holds.

Claim. It suffices to prove that for all subgroups X C A(k) the group X /X is torsion
free.

Indeed, let X be a subgroup of A(k), and let X’ be any subgroup of finite index of A(k)
containing X. Because X is contained in X’ the group X is contained in X'. Moreover X'
is of finite index in Y,, so if X' /X' is torsion free we must have equality X' = X Hence, as
X' was arbitrary, X is contained in every subgroup of finite index of A(k) which contains X.
This in turn implies that the equality X = X holds, because A(k) is finitely generated.

We now fix a subgroup X of A(k) and a prime number ¢, and we show that X /X contains
no {—torsion, or equivalently that (X /X)® Z; is torsion free. Replacing U by a smaller open
subscheme U’ C U and deleting some finitely many elements from S we may suppose without
loss of generality that ¢ is invertible on U. Let us then choose a 1-motive M = [u: Y — A]
over U such that Y is constant and such that u(Y) = X. From the propositions
and we get a canonical Zy—linear injections

(X/X)® 2z, L gLy, T,M) HY(Ty, T,M) HN(LM T, M)

It is therefore enough to show that H}!(LM, T,M) is torsion free. But this is guaranteed by
Lemma [£.1] and the hypothesis that A is geometrically simple. O

Remark 4.6. In the proof we only needed information on the torsion of H!(LM, K T,M)
because of the trick that permitted us to suppose that X is of finite index in X. One can
show that the group H} (LM, T,M) is in fact trivial for such 1-motives.

Question 1. Let G be a semiabelian variety over a number field &, let X be a finitely
generated subgroup of G(k) and let P € G(U) be a point. Suppose that for all finite places
v of k, the point P belongs to the closure of X in G(k,). Does then P belong to X7 Here,
k, denotes the completion of k at v, and we equip G(k,) with the topology induced by the
topology of k,. If G has good reduction at v and if X and P are integral at v (so this concerns
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all but finitely many places) then to say that P is in the closure of X in G(k,) is equivalent
with saying that P belongs to X modulo v, essentially by Hensel’s Lemma.

Question 2. Let A be an abelian variety over a number field k, let X C A(k) be a
subgroup of the group of rational points and let P € A(k) be a rational point. What can one

say about the density of the set of places p of k with the property that red,(P) belongs to
red,(X)?
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